[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:548: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py", line 531, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 386, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1048, in __call__
if self.dispatch_one_batch(iterator):
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 866, in dispatch_one_batch
self._dispatch(tasks)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 784, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 572, in __init__
self.results = batch()
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 168, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1242, in fit
super().fit(
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 279, in fit
raise ValueError("max_features must be in (0, n_features]")
ValueError: max_features must be in (0, n_features]
warnings.warn("Estimator fit failed. The score on this train-test"
/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:548: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py", line 531, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 386, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1048, in __call__
if self.dispatch_one_batch(iterator):
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 866, in dispatch_one_batch
self._dispatch(tasks)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 784, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 572, in __init__
self.results = batch()
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 168, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1242, in fit
super().fit(
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 279, in fit
raise ValueError("max_features must be in (0, n_features]")
ValueError: max_features must be in (0, n_features]
warnings.warn("Estimator fit failed. The score on this train-test"
/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:548: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py", line 531, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 386, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1048, in __call__
if self.dispatch_one_batch(iterator):
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 866, in dispatch_one_batch
self._dispatch(tasks)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 784, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 572, in __init__
self.results = batch()
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 168, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1242, in fit
super().fit(
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 279, in fit
raise ValueError("max_features must be in (0, n_features]")
ValueError: max_features must be in (0, n_features]
warnings.warn("Estimator fit failed. The score on this train-test"
/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:548: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py", line 531, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 386, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1048, in __call__
if self.dispatch_one_batch(iterator):
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 866, in dispatch_one_batch
self._dispatch(tasks)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 784, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 572, in __init__
self.results = batch()
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 168, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1242, in fit
super().fit(
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 279, in fit
raise ValueError("max_features must be in (0, n_features]")
ValueError: max_features must be in (0, n_features]
warnings.warn("Estimator fit failed. The score on this train-test"
/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py:548: FitFailedWarning: Estimator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/model_selection/_validation.py", line 531, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 386, in fit
trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 1048, in __call__
if self.dispatch_one_batch(iterator):
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 866, in dispatch_one_batch
self._dispatch(tasks)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 784, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 208, in apply_async
result = ImmediateResult(func)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py", line 572, in __init__
self.results = batch()
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in __call__
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/joblib/parallel.py", line 262, in <listcomp>
return [func(*args, **kwargs)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/ensemble/_forest.py", line 168, in _parallel_build_trees
tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 1242, in fit
super().fit(
File "/home/david/anaconda3/lib/python3.8/site-packages/sklearn/tree/_classes.py", line 279, in fit
raise ValueError("max_features must be in (0, n_features]")
ValueError: max_features must be in (0, n_features]
warnings.warn("Estimator fit failed. The score on this train-test"