• toc: true
  • badges: true
  • comments: true
  • sticky_rank: 1
  • categories: [Big Data , h2o]

National Institute of Diabetes and Digestive and Kidney Diseases, https://www.niddk.nih.gov/

h2o.ai

import h2o
import time
import seaborn
import itertools
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
from h2o.estimators.gbm import H2OGradientBoostingEstimator
from h2o.estimators.random_forest import H2ORandomForestEstimator

%matplotlib inline
h2o.init()
Checking whether there is an H2O instance running at http://localhost:54321 . connected.
H2O_cluster_uptime: 9 mins 06 secs
H2O_cluster_timezone: Etc/UTC
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.30.1.3
H2O_cluster_version_age: 1 month and 10 days
H2O_cluster_name: H2O_from_python_unknownUser_6cf4p5
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 3.179 Gb
H2O_cluster_total_cores: 2
H2O_cluster_allowed_cores: 2
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:54321
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: Amazon S3, XGBoost, Algos, AutoML, Core V3, TargetEncoder, Core V4
Python_version: 3.6.9 final
diabetes_df = h2o.import_file("https://raw.githubusercontent.com/davidrkearney/colab-notebooks/main/datasets/diabetes.csv", destination_frame="diabetes_df")
Parse progress: |█████████████████████████████████████████████████████████| 100%
import pandas as pd
url = 'https://raw.githubusercontent.com/davidrkearney/colab-notebooks/main/datasets/diabetes.csv'
df = pd.read_csv(url, error_bad_lines=False)
df
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
... ... ... ... ... ... ... ... ... ...
763 10 101 76 48 180 32.9 0.171 63 0
764 2 122 70 27 0 36.8 0.340 27 0
765 5 121 72 23 112 26.2 0.245 30 0
766 1 126 60 0 0 30.1 0.349 47 1
767 1 93 70 31 0 30.4 0.315 23 0

768 rows × 9 columns

diabetes_df.describe()
Rows:768
Cols:9


Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
type int int int int int real real int int
mins 0.0 0.0 0.0 0.0 0.0 0.0 0.078 21.0 0.0
mean 3.845052083333336120.89453125 69.10546874999994 20.53645833333335779.79947916666666 31.992578125000030.4718763020833334 33.2408854166666150.3489583333333333
maxs 17.0 199.0 122.0 99.0 846.0 67.1 2.42 81.0 1.0
sigma 3.36957806269887 31.97261819513622419.35580717064477715.952217567727642115.244002351338037.8841603203754410.331328595012775 11.7602315406786890.47695137724279896
zeros 111 5 35 227 374 11 0 0 500
missing0 0 0 0 0 0 0 0 0
0 6.0 148.0 72.0 35.0 0.0 33.6 0.627 50.0 1.0
1 1.0 85.0 66.0 29.0 0.0 26.6 0.351 31.0 0.0
2 8.0 183.0 64.0 0.0 0.0 23.3 0.672 32.0 1.0
3 1.0 89.0 66.0 23.0 94.0 28.1 0.167 21.0 0.0
4 0.0 137.0 40.0 35.0 168.0 43.1 2.288 33.0 1.0
5 5.0 116.0 74.0 0.0 0.0 25.6 0.201 30.0 0.0
6 3.0 78.0 50.0 32.0 88.0 31.0 0.248 26.0 1.0
7 10.0 115.0 0.0 0.0 0.0 35.3 0.134 29.0 0.0
8 2.0 197.0 70.0 45.0 543.0 30.5 0.158 53.0 1.0
9 8.0 125.0 96.0 0.0 0.0 0.0 0.232 54.0 1.0
for col in diabetes_df.columns:
    diabetes_df[col].hist()
plt.figure(figsize=(10,10))
corr = diabetes_df.cor().as_data_frame()
corr.index = diabetes_df.columns
sns.heatmap(corr, annot = True, cmap='RdYlGn', vmin=-1, vmax=1)
plt.title("Correlation Heatmap", fontsize=16)
plt.show()
train, valid, test = diabetes_df.split_frame(ratios=[0.6,0.2], seed=1234)
response = "Outcome"
train[response] = train[response].asfactor()
valid[response] = valid[response].asfactor()
test[response] = test[response].asfactor()
print("Number of rows in train, valid and test set : ", train.shape[0], valid.shape[0], test.shape[0])
Number of rows in train, valid and test set :  465 148 155
predictors = diabetes_df.columns[:-1]
gbm = H2OGradientBoostingEstimator()
gbm.train(x=predictors, y=response, training_frame=train)
gbm Model Build progress: |███████████████████████████████████████████████| 100%
print(gbm)
Model Details
=============
H2OGradientBoostingEstimator :  Gradient Boosting Machine
Model Key:  GBM_model_python_1604778858031_53


Model Summary: 
number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves
0 50.0 50.0 11552.0 5.0 5.0 5.0 6.0 23.0 13.68

ModelMetricsBinomial: gbm
** Reported on train data. **

MSE: 0.05394537414652564
RMSE: 0.2322614349101582
LogLoss: 0.21164045617145613
Mean Per-Class Error: 0.05419671999032927
AUC: 0.9899262602248459
AUCPR: 0.9845164166436653
Gini: 0.9798525204496917

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.46220528851885034: 
0 1 Error Rate
0 0 290.0 9.0 0.0301 (9.0/299.0)
1 1 14.0 152.0 0.0843 (14.0/166.0)
2 Total 304.0 161.0 0.0495 (23.0/465.0)
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
0 max f1 0.462205 0.929664 150.0
1 max f2 0.323826 0.944836 176.0
2 max f0point5 0.548022 0.967302 132.0
3 max accuracy 0.506976 0.950538 142.0
4 max precision 0.983850 1.000000 0.0
5 max recall 0.173383 1.000000 227.0
6 max specificity 0.983850 1.000000 0.0
7 max absolute_mcc 0.506976 0.892066 142.0
8 max min_per_class_accuracy 0.372134 0.939799 163.0
9 max mean_per_class_accuracy 0.370458 0.945803 164.0
10 max tns 0.983850 299.000000 0.0
11 max fns 0.983850 165.000000 0.0
12 max fps 0.018713 299.000000 399.0
13 max tps 0.173383 166.000000 227.0
14 max tnr 0.983850 1.000000 0.0
15 max fnr 0.983850 0.993976 0.0
16 max fpr 0.018713 1.000000 399.0
17 max tpr 0.173383 1.000000 227.0
Gains/Lift Table: Avg response rate: 35.70 %, avg score: 35.71 %
group cumulative_data_fraction lower_threshold lift cumulative_lift response_rate score cumulative_response_rate cumulative_score capture_rate cumulative_capture_rate gain cumulative_gain kolmogorov_smirnov
0 1 0.010753 0.964760 2.801205 2.801205 1.000000 0.970134 1.000000 0.970134 0.030120 0.030120 180.120482 180.120482 0.030120
1 2 0.021505 0.959842 2.801205 2.801205 1.000000 0.963441 1.000000 0.966788 0.030120 0.060241 180.120482 180.120482 0.060241
2 3 0.030108 0.948198 2.801205 2.801205 1.000000 0.952824 1.000000 0.962798 0.024096 0.084337 180.120482 180.120482 0.084337
3 4 0.040860 0.944016 2.801205 2.801205 1.000000 0.946246 1.000000 0.958442 0.030120 0.114458 180.120482 180.120482 0.114458
4 5 0.051613 0.940243 2.801205 2.801205 1.000000 0.942268 1.000000 0.955073 0.030120 0.144578 180.120482 180.120482 0.144578
5 6 0.101075 0.910936 2.801205 2.801205 1.000000 0.924669 1.000000 0.940194 0.138554 0.283133 180.120482 180.120482 0.283133
6 7 0.150538 0.868553 2.801205 2.801205 1.000000 0.889815 1.000000 0.923641 0.138554 0.421687 180.120482 180.120482 0.421687
7 8 0.200000 0.797054 2.801205 2.801205 1.000000 0.834641 1.000000 0.901630 0.138554 0.560241 180.120482 180.120482 0.560241
8 9 0.301075 0.556327 2.801205 2.801205 1.000000 0.680179 1.000000 0.827286 0.283133 0.843373 180.120482 180.120482 0.843373
9 10 0.400000 0.326087 1.157019 2.394578 0.413043 0.441848 0.854839 0.731963 0.114458 0.957831 15.701938 139.457831 0.867530
10 11 0.501075 0.189518 0.357601 1.983686 0.127660 0.257074 0.708155 0.636170 0.036145 0.993976 -64.239938 98.368582 0.766551
11 12 0.600000 0.119706 0.060896 1.666667 0.021739 0.148143 0.594982 0.555707 0.006024 1.000000 -93.910424 66.666667 0.622074
12 13 0.698925 0.083724 0.000000 1.430769 0.000000 0.101152 0.510769 0.491370 0.000000 1.000000 -100.000000 43.076923 0.468227
13 14 0.800000 0.053134 0.000000 1.250000 0.000000 0.067558 0.446237 0.437824 0.000000 1.000000 -100.000000 25.000000 0.311037
14 15 0.898925 0.034204 0.000000 1.112440 0.000000 0.042448 0.397129 0.394313 0.000000 1.000000 -100.000000 11.244019 0.157191
15 16 1.000000 0.018713 0.000000 1.000000 0.000000 0.026483 0.356989 0.357135 0.000000 1.000000 -100.000000 0.000000 0.000000

Scoring History: 
timestamp duration number_of_trees training_rmse training_logloss training_auc training_pr_auc training_lift training_classification_error
0 2020-11-07 20:03:31 0.002 sec 0.0 0.479112 0.651666 0.500000 0.356989 1.000000 0.643011
1 2020-11-07 20:03:31 0.050 sec 1.0 0.456602 0.606210 0.899111 0.841991 2.801205 0.178495
2 2020-11-07 20:03:31 0.084 sec 2.0 0.437174 0.568855 0.918050 0.868180 2.801205 0.154839
3 2020-11-07 20:03:31 0.115 sec 3.0 0.420575 0.537898 0.919994 0.870297 2.801205 0.156989
4 2020-11-07 20:03:31 0.141 sec 4.0 0.405987 0.511169 0.925938 0.881996 2.801205 0.148387
5 2020-11-07 20:03:31 0.160 sec 5.0 0.392586 0.486722 0.934239 0.894388 2.801205 0.141935
6 2020-11-07 20:03:31 0.173 sec 6.0 0.380476 0.464792 0.937936 0.899843 2.801205 0.141935
7 2020-11-07 20:03:31 0.188 sec 7.0 0.370456 0.446541 0.939205 0.901852 2.801205 0.139785
8 2020-11-07 20:03:31 0.207 sec 8.0 0.362031 0.431383 0.942207 0.906607 2.801205 0.133333
9 2020-11-07 20:03:31 0.227 sec 9.0 0.355361 0.418882 0.941834 0.907237 2.801205 0.133333
10 2020-11-07 20:03:31 0.249 sec 10.0 0.346859 0.403572 0.945400 0.914144 2.801205 0.144086
11 2020-11-07 20:03:31 0.264 sec 11.0 0.340863 0.392730 0.947445 0.918139 2.801205 0.133333
12 2020-11-07 20:03:31 0.278 sec 12.0 0.335607 0.382817 0.949037 0.920373 2.801205 0.131183
13 2020-11-07 20:03:31 0.294 sec 13.0 0.329409 0.371826 0.951445 0.924512 2.801205 0.144086
14 2020-11-07 20:03:31 0.313 sec 14.0 0.324769 0.363182 0.952946 0.927135 2.801205 0.133333
15 2020-11-07 20:03:31 0.331 sec 15.0 0.320250 0.354856 0.954527 0.929900 2.801205 0.122581
16 2020-11-07 20:03:31 0.349 sec 16.0 0.315399 0.346112 0.956361 0.933066 2.801205 0.111828
17 2020-11-07 20:03:31 0.365 sec 17.0 0.310275 0.337092 0.958123 0.935908 2.801205 0.105376
18 2020-11-07 20:03:31 0.384 sec 18.0 0.305461 0.328962 0.960440 0.939669 2.801205 0.103226
19 2020-11-07 20:03:31 0.399 sec 19.0 0.301918 0.322548 0.961428 0.941032 2.801205 0.103226
See the whole table with table.as_data_frame()

Variable Importances: 
variable relative_importance scaled_importance percentage
0 Glucose 160.889725 1.000000 0.386115
1 BMI 107.157028 0.666028 0.257163
2 DiabetesPedigreeFunction 49.382526 0.306934 0.118512
3 Age 28.789474 0.178939 0.069091
4 BloodPressure 24.516136 0.152379 0.058836
5 Pregnancies 22.055462 0.137084 0.052930
6 Insulin 12.949581 0.080487 0.031077
7 SkinThickness 10.949017 0.068053 0.026276

perf = gbm.model_performance(valid)
print(perf)
ModelMetricsBinomial: gbm
** Reported on test data. **

MSE: 0.18115330538099383
RMSE: 0.4256210819273334
LogLoss: 0.5366686568411096
Mean Per-Class Error: 0.25621588841722254
AUC: 0.804932282191227
AUCPR: 0.6470306042290592
Gini: 0.6098645643824541

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.1458393490707833: 
0 1 Error Rate
0 0 53.0 44.0 0.4536 (44.0/97.0)
1 1 3.0 48.0 0.0588 (3.0/51.0)
2 Total 56.0 92.0 0.3176 (47.0/148.0)
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
0 max f1 0.145839 0.671329 91.0
1 max f2 0.112531 0.819936 106.0
2 max f0point5 0.668426 0.642458 31.0
3 max accuracy 0.668426 0.750000 31.0
4 max precision 0.980739 1.000000 0.0
5 max recall 0.112531 1.000000 106.0
6 max specificity 0.980739 1.000000 0.0
7 max absolute_mcc 0.145839 0.477769 91.0
8 max min_per_class_accuracy 0.328581 0.686275 64.0
9 max mean_per_class_accuracy 0.145839 0.743784 91.0
10 max tns 0.980739 97.000000 0.0
11 max fns 0.980739 50.000000 0.0
12 max fps 0.019964 97.000000 147.0
13 max tps 0.112531 51.000000 106.0
14 max tnr 0.980739 1.000000 0.0
15 max fnr 0.980739 0.980392 0.0
16 max fpr 0.019964 1.000000 147.0
17 max tpr 0.112531 1.000000 106.0
Gains/Lift Table: Avg response rate: 34.46 %, avg score: 36.45 %
group cumulative_data_fraction lower_threshold lift cumulative_lift response_rate score cumulative_response_rate cumulative_score capture_rate cumulative_capture_rate gain cumulative_gain kolmogorov_smirnov
0 1 0.013514 0.973098 1.450980 1.450980 0.500000 0.977228 0.500000 0.977228 0.019608 0.019608 45.098039 45.098039 0.009299
1 2 0.020270 0.966872 2.901961 1.934641 1.000000 0.972400 0.666667 0.975618 0.019608 0.039216 190.196078 93.464052 0.028906
2 3 0.033784 0.952356 2.901961 2.321569 1.000000 0.963776 0.800000 0.970881 0.039216 0.078431 190.196078 132.156863 0.068122
3 4 0.040541 0.927994 2.901961 2.418301 1.000000 0.939870 0.833333 0.965713 0.019608 0.098039 190.196078 141.830065 0.087730
4 5 0.054054 0.923162 1.450980 2.176471 0.500000 0.925415 0.750000 0.955638 0.019608 0.117647 45.098039 117.647059 0.097029
5 6 0.101351 0.892244 2.072829 2.128105 0.714286 0.906349 0.733333 0.932637 0.098039 0.215686 107.282913 112.810458 0.174449
6 7 0.155405 0.836001 2.176471 2.144928 0.750000 0.861825 0.739130 0.908006 0.117647 0.333333 117.647059 114.492754 0.271478
7 8 0.202703 0.722515 1.658263 2.031373 0.571429 0.773092 0.700000 0.876527 0.078431 0.411765 65.826331 103.137255 0.318981
8 9 0.304054 0.517149 1.547712 1.870153 0.533333 0.605657 0.644444 0.786237 0.156863 0.568627 54.771242 87.015251 0.403679
9 10 0.398649 0.409838 1.036415 1.672316 0.357143 0.461534 0.576271 0.709188 0.098039 0.666667 3.641457 67.231638 0.408935
10 11 0.500000 0.255816 0.967320 1.529412 0.333333 0.314072 0.527027 0.629097 0.098039 0.764706 -3.267974 52.941176 0.403881
11 12 0.601351 0.146848 1.354248 1.499890 0.466667 0.196076 0.516854 0.556116 0.137255 0.901961 35.424837 49.988984 0.458662
12 13 0.695946 0.115818 0.621849 1.380544 0.214286 0.134532 0.475728 0.498813 0.058824 0.960784 -37.815126 38.054445 0.404083
13 14 0.797297 0.062397 0.386928 1.254237 0.133333 0.091193 0.432203 0.446997 0.039216 1.000000 -61.307190 25.423729 0.309278
14 15 0.898649 0.039886 0.000000 1.112782 0.000000 0.049685 0.383459 0.402188 0.000000 1.000000 -100.000000 11.278195 0.154639
15 16 1.000000 0.019964 0.000000 1.000000 0.000000 0.030207 0.344595 0.364487 0.000000 1.000000 -100.000000 0.000000 0.000000

gbm_tune = H2OGradientBoostingEstimator(
    ntrees = 3000,
    learn_rate = 0.01,
    stopping_rounds = 20,
    stopping_metric = "AUC",
    col_sample_rate = 0.7,
    sample_rate = 0.7,
    seed = 1234
)      
gbm_tune.train(x=predictors, y=response, training_frame=train, validation_frame=valid)
gbm Model Build progress: |███████████████████████████████████████████████| 100%
gbm_tune.model_performance(valid).auc()
0.8019001414998989
from h2o.grid.grid_search import H2OGridSearch

gbm_grid = H2OGradientBoostingEstimator(
    ntrees = 3000,
    learn_rate = 0.01,
    stopping_rounds = 20,
    stopping_metric = "AUC",
    col_sample_rate = 0.7,
    sample_rate = 0.7,
    seed = 1234
) 

hyper_params = {'max_depth':[4,6,8,10,12]}
grid = H2OGridSearch(gbm_grid, hyper_params,
                         grid_id='depth_grid',
                         search_criteria={'strategy': "Cartesian"})
#Train grid search
grid.train(x=predictors, 
           y=response,
           training_frame=train,
           validation_frame=valid)
gbm Grid Build progress: |████████████████████████████████████████████████| 100%
print(grid)
    max_depth           model_ids             logloss
0          10  depth_grid_model_4  0.5610332739005056
1          12  depth_grid_model_5  0.5610431620153586
2           8  depth_grid_model_3  0.5618675574114658
3           6  depth_grid_model_2  0.5688369200105283
4           4  depth_grid_model_1  0.5720338350452505

sorted_grid = grid.get_grid(sort_by='auc',decreasing=True)
print(sorted_grid)
    max_depth           model_ids                 auc
0          10  depth_grid_model_4  0.8067515666060238
1          12  depth_grid_model_5  0.8067515666060238
2           8  depth_grid_model_3  0.8033151404891854
3           6  depth_grid_model_2  0.8031129977764302
4           4  depth_grid_model_1  0.7984637153830605

cv_gbm = H2OGradientBoostingEstimator(
    ntrees = 3000,
    learn_rate = 0.05,
    stopping_rounds = 20,
    stopping_metric = "AUC",
    nfolds=4, 
    seed=2018)
cv_gbm.train(x = predictors, y = response, training_frame = train, validation_frame=valid)
cv_summary = cv_gbm.cross_validation_metrics_summary().as_data_frame()
cv_summary
gbm Model Build progress: |███████████████████████████████████████████████| 100%
mean sd cv_1_valid cv_2_valid cv_3_valid cv_4_valid
0 accuracy 0.8060614 0.028866975 0.81512606 0.84166664 0.775 0.7924528
1 auc 0.83460003 0.0253348 0.8711854 0.82493657 0.81303704 0.8292411
2 aucpr 0.7332863 0.08590643 0.77500844 0.60952866 0.7449944 0.8036139
3 err 0.19393861 0.028866975 0.18487395 0.15833333 0.225 0.20754717
4 err_count 22.5 3.3166249 22.0 19.0 27.0 22.0
5 f0point5 0.7166275 0.023856336 0.7432432 0.6993007 0.6938776 0.7300885
6 f1 0.7359389 0.051860016 0.8 0.6779661 0.7157895 0.75
7 f2 0.75854874 0.086101264 0.86614174 0.65789473 0.73913044 0.77102804
8 lift_top_group 2.0913858 0.6500798 1.2395834 1.9354838 2.6666667 2.5238094
9 logloss 0.4842181 0.03085123 0.46077308 0.45635447 0.52019364 0.49955118
10 max_per_class_error 0.2667725 0.061059155 0.2535211 0.3548387 0.24444444 0.21428572
11 mcc 0.58331674 0.049473092 0.65121645 0.5746587 0.5324516 0.5749401
12 mean_per_class_accuracy 0.79290384 0.027116295 0.8315728 0.7776368 0.77111113 0.79129463
13 mean_per_class_error 0.20709616 0.027116295 0.16842723 0.22236317 0.22888888 0.20870535
14 mse 0.1554569 0.008760154 0.14931631 0.14733355 0.16610987 0.1590679
15 pr_auc 0.7332863 0.08590643 0.77500844 0.60952866 0.7449944 0.8036139
16 precision 0.7053386 0.017187094 0.7096774 0.71428573 0.68 0.7173913
17 r2 0.30923334 0.06338601 0.37955743 0.23102464 0.29126453 0.33508673
18 recall 0.7757745 0.11168112 0.9166667 0.6451613 0.75555557 0.78571427
19 rmse 0.39416355 0.011076028 0.38641468 0.38384053 0.4075658 0.39883316
20 specificity 0.8100332 0.070176266 0.74647886 0.9101124 0.7866667 0.796875
cv_gbm.model_performance(valid).auc()
0.8059429957550029

XGBoost:

from h2o.estimators import H2OXGBoostEstimator

cv_xgb = H2OXGBoostEstimator(
    ntrees = 3000,
    learn_rate = 0.05,
    stopping_rounds = 20,
    stopping_metric = "AUC",
    nfolds=4, 
    seed=2018)
cv_xgb.train(x = predictors, y = response, training_frame = train, validation_frame=valid)
cv_xgb.model_performance(valid).auc()
xgboost Model Build progress: |███████████████████████████████████████████| 100%
0.7982615726703053
cv_xgb.varimp_plot()

AutoML : Automatic Machine Learning:

From the H2O AutoML page,

from h2o.automl import H2OAutoML

aml = H2OAutoML(max_models = 10, max_runtime_secs=100, seed = 1)
aml.train(x=predictors, y=response, training_frame=train, validation_frame=valid)
AutoML progress: |
20:03:54.196: User specified a validation frame with cross-validation still enabled. Please note that the models will still be validated using cross-validation only, the validation frame will be used to provide purely informative validation metrics on the trained models.

████████████████████████████████████████████████████████| 100%

automl leaderboard:

lb = aml.leaderboard
lb
model_id auc logloss aucpr mean_per_class_error rmse mse
StackedEnsemble_BestOfFamily_AutoML_20201107_2003540.838498 0.4712090.720251 0.2251680.3897590.151912
DRF_1_AutoML_20201107_200354 0.837813 0.6737430.750599 0.2251580.3905940.152563
StackedEnsemble_AllModels_AutoML_20201107_200354 0.836755 0.4738490.717937 0.2331970.3913090.153122
GLM_1_AutoML_20201107_200354 0.831638 0.4887980.716653 0.2382040.3959150.156749
GBM_2_AutoML_20201107_200354 0.823921 0.4923420.730483 0.2401980.3978990.158323
GBM_1_AutoML_20201107_200354 0.823186 0.4993620.730256 0.23354 0.3988240.15906
GBM_3_AutoML_20201107_200354 0.822944 0.4918740.745621 0.2455780.3968770.157511
XGBoost_2_AutoML_20201107_200354 0.822722 0.4900480.729844 0.2371860.4020050.161608
GBM_4_AutoML_20201107_200354 0.82235 0.4920860.726875 0.2415780.3989740.159181
GBM_5_AutoML_20201107_200354 0.817947 0.4966380.68625 0.2392110.4037480.163012

metalearner = h2o.get_model(aml.leader.metalearner()['name'])
metalearner.std_coef_plot()